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Abstract. — Precise measurement of cosmological and astrophysical param-
eters is fundamental to a comprehensive theory of cosmology. This has tra-
ditionally required computationally-intensive numerical simulations to be run
on scarce telescope resources, prompting researchers to seek new methods for
their study. Recently, machine learning has emerged as a useful tool for con-
straining parameter space and dimensionality while allowing for a high degree
of accuracy. Specifically, the methods of emulation and parameter estimation
have proven particularly suited to studies of the 21cm signal. We investigate
the benefits and shortcomings of both methods in this review, and suggest
refinements as well as prospective applications.
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1. Background on 21cm Cosmology

The first stars to form populated a bleak,
cold universe, but their ultra-violet radiation
ionized the surrounding gas medium (Loeb,
2010) and made it possible for new genera-
tions of stars to follow. Local perturbations
in mass density led to halos where gravita-
tional collapse coalesced matter into galaxies
(Pritchard, 2012). At this point the universe
had expanded and cooled from its previously
opaque state (Peebles, 1994), and so as pho-
tons interacted with electrons and protons,
they produced emission lines that could be
observed. Though the early stars could the-
oretically be detected with powerful enough
telescopes (Windhorst, 2018), their low rela-
tive luminosities make detection challenging.
In order to learn about this epoch, known as
“Cosmic Dawn,” it is helpful to study instead
the effect of such early luminous matter on its
surrounding material.

Figure 1. Spin flip diagram of the 21cm
line of neutral hydrogen (Loeb, 2010).

Due to its ubiquity as well as its sensitiv-
ity to the ionization level of the IGM (Gillet,
2019), hydrogen arises as a natural candidate.
In fact, by studying the spectral lines pro-
duced when photons interact with neutral hy-
drogen, it is possible to create snapshots of
the universe over the course of its evolution
(Pritchard, 2012). The excitation of a neutral
hydrogen atom by a photon releases energy in
the form of a spectral line, which is seen as ab-
sorption or emission depending on its temper-
ature relative to that of the local background.
In Figure 1 this is illustrated in the n = 1 sec-
tion where the spin flip of a proton releases a
spectral line corresponding to a wavelength of
21cm.

As the universe expands, the regions from
which these spectral lines emerged recede far-
ther away from us, and the wavelength ap-
pears redshifted. This is described by:

z + 1 =
�observed

�emitted
, (1)

where z is the redshift (Loeb, 2010). From
Eq. 1 it is clear to see higher redshift cor-
responds to the true wavelength being much
smaller than the one observed, which is anal-
ogous to saying the wavelength was stretched
while it travelled toward us. It is then possi-
ble to partition the universe at different times
by comparing sections corresponding to wave-
lengths of 21cm ·(1+z) (Loeb, 2010), to effec-
tively map the history of the evolution of the
early universe.

Variation in atomic hydrogen at these se-
lected times provides insight into changes in
the concentration and distribution of ionized
regions, which in turn informs us about the
composition and even the temperature of the
intergalactic medium (Pritchard, 2012). From
this, it is possible to better understand the
conditions under which the first stars and
galaxies formed. However, these distributions
which resemble Gaussian fields during the in-
flation period, are subject to gravitational ef-
fects such as galaxy clustering (Loeb, 2010),
and devolve over time into non-Gaussian fields
(Ramanah, 2020). The cumulative effects of
these perturbations in the gradient potential
can be measured, but the modeling of these
matter distributions is rendered computation-
ally intensive (Kern, 2017). This is especially
true where images of faraway, early galaxies
are further distorted by weak gravitational
lensing (Mootoovaloo, 2020). Small scales are
also nonlinear; whereas density fields appear
Gaussian at large scales (�(x) ⌧ 1 in Eq.3 be-
low) , and can be statistically described by the
power spectrum,

P (k) = (2⇡)�3h| �2k |i

for �k =

Z
d3x�(x)e�ikx,

(2)

and over density,

�(x) =
⇢(x)� ⇢̄

⇢̄
, (3)

such is not the case for small scales (�(x) ⇠ 1
in Eq. 3) (Loeb, 2010). Consequentially, nu-
merical simulation of small scales again prove
costly.

There is an ongoing effort to use scarce
telescope time as efficiently as possible, and
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to generate reasonable estimates of parame-
ter values for when new radio telescopes ca-
pable of reading as-of-yet undetected signals
are operational. Numerical simulations are
very costly to run, even for optimized algo-
rithms (Villaescusa-Navarro et al., 2020). The
non-linear structure of these distributions of-
ten means tools such as traditional power
spectrum analysis, while useful (Ribli, 2019;
Schmit, 2017), are incomplete (Gillet, 2019).
Thus, researchers in recent years have turned
to alternative methods for computational and
statistical modeling of the parameters describ-
ing the early Universe.

2. Machine Learning

21cm cosmology is a natural candidate for
machine learning due to the high dimension-
ality and limited constraints of its parame-
ter spaces (Kern, 2017), as well as the many
opportunities for optimizing simulation run
time. Furthermore, the usual concerns of ma-
chine learning, such as the black box nature of
many algorithms (Buhrmester, 2019), are not
inherently problematic in the context of 21cm.

2.1. Definition and basic architecture
Machine learning is the iterative applica-

tion of an algorithm to a training data set such
that predictions are generated without having
been programmed explicitly, such that these

Figure 2. Schema for multilayer perceptron
(MLP) network (Schmit 2017).

predictions tend toward increased accuracy
(Nichols, 2019). The figure provided in Ap-
pendix 1 illustrates the layers of a Convolu-
tional Neural Network (CNN), a type of ma-
chine learning algorithm, used by Gillet et al.
(2019) to predict the values of several astro-
physical parameters (shown at the bottom of
the figure). This is useful for conceptualizing
the overarching structure of a machine learn-
ing algorithm, and emphasizes the repeated
application of hidden layers responsible for
feature extraction while also showing the in-
terconnectedness between these and the out-
side layers.

Additionally, Figure 2 visualizes the three
layers in a neural network, these consisting
of the input layer which defines some data
nodes, the hidden layers which are adjusted
iteratively and which describe the relation-
ships between sets of nodes (Nichols, 2019)
as weighted linear combinations, and the out-
put layer which returns output values (Schmit,
2017). The weights associated to each ver-
tical slice of nodes are adjusted by minimiz-
ing the mean square error distance of values
predicted by the algorithm from those seen
in the training data set. The training algo-
rithm for the multilayer perceptron (MLP) de-
sign described in this paper is useful in situa-
tions where the training data set is sparse and
parameter space has low dimension (Schmit,
2017).

There are two fundamental ways for the
learning to transpire: supervised, which is
suited to classification problems, and unsu-
pervised, which has the model infer outcomes
from data (Nichols, 2019). In order for the
model to be trained, there must be some idea
of minimizing the error at each stage of its run.
This is defined by the loss function (Nichols,
2019), and in the case of 21cm studies tends to
be some form of mean square error minimiza-
tion. A notable variation on the loss function
is discussed in subsection 3.1. The evaluation
of models is centered in their ability to recre-
ate results established by other, non machine
learning, methods as well as to predict results
from observational data. In addition to this,
computational cost and application to prob-
lem statements where traditional approaches
fail, are useful metrics for evaluating machine
learning approaches. Machine learning in the
context presented here is a tool with the pur-
pose of advancing 21cm studies.
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2.2. Motivation
Both the direct and inverse approaches

discussed in this review have as their cen-
tral objective the measurement of parame-
ters (Pritchard, 2012) which in turn describe
the large-scale structures of interest at spe-
cific points in the early universe’s evolution.
Researchers implementing machine learning
in 21cm cosmology seek to statistically map
the distribution of matter density over time
(Villaescusa-Navarro et al., 2020), and in par-
ticular during the Cosmic Dawn, by refining
those parameters’ constraints. This is accom-
plished via a variety of approaches, and meth-
ods must be tailored to the specific context of
each experiment. The result is an amalgam
of previously established constraints and new
adjustments, which is used to iteratively re-
duce error bars and further constrain param-
eter spaces. As such, it makes sense to adopt
a piecewise approach when evaluating 21cm
machine learning research.

There is an intrinsic pairing between em-
ulation and parameter estimation, and many
papers pursue either a forward-modeling (em-
ulation) or inverse-modeling (parameter esti-
mation) approach; the techniques can also be
combined, though the scope would be tremen-
dous. As such, the majority of papers dis-
cussed in this review pursue either emulation
or parameter estimation, and these will be
handled in separate sections. The results are
then summarized in the conclusion.

2.3. Limitations
Though machine learning presents many

exciting opportunities for 21cm, these are not
without their own associated drawbacks.

The problem is not defined over a known
structure that can be consistently, adequately
described by the power spectrum (Loeb,
2010). The machine learning algorithms can
be understood to skip this definition stage and
proceed immediately to parameter estimation.
However, this reduces the problem to a de-
pendence on a black box system (Buhrmester,
2019). In such situations, the latent layer,
used for identifying the features the network
picks out, may not have a clear motivation
for making the selections it does (Buhrmester,
2019). Additionally, the problem of isolating

bases and accounting for their respective in-
fluences on the general parameter space de-
pends on successful interpretation of feature
engineering (Hortua, 2020).

As the goal is to refine both the parame-
ter space and the values of the parameter ele-
ments themselves, this is clearly problematic.
It may still be possible to identify the physical
implications of dependencies, but since much
of the actual learning is intrinsically based on
feature engineering (Gillet, 2019), it is un-
likely that the structure particulars can be re-
covered or explained ex post facto. Again, this
is often ignored as the primary goal is recovery
of parameter estimates. A network may out-
put some set of parameter estimates that can
be evaluated against the degree to which they
reflect reality. Assuming observed values are
in agreement with the algorithm output for
a significant number of numerical analyses, it
may not be necessary to provide further jus-
tification. In that case, the structure may not
be of foremost interest.

This may not always be possible, however,
as the 21cm signal has not yet been directly
measured for periods such as the cosmic dark
ages. Machine learning is not solely a means
for speeding up computation; it is used also
where traditional methods fail entirely. For
example, machine learning may successfully
circumvent the need to explicitly state a like-
lihood function, in situations where one can-
not be easily defined (Villaescusa-Navarro et
al., 2020), or skip over the formulation of the
nonlinear structure the problem is defined in.
And particularly in such simulations where
machine learning outputs cannot be verified
against traditional numerical methods, it is of
utmost importance to compare outputs to ob-
servational data, and for situations in which
such data has not yet been recorded, even
the best estimates remain unverifiable. This
problem is discussed at length in Section 5 of
this review, which focuses on instrumentation
which is slated for completion in a matter of
years, and which will prove essential in vali-
dating learned outputs.

3. Model Emulation

The principle objective of model emulation
is to use deep generative models to simulate
Cosmic Dawn for 21cm by assuming parame-
ter values are known, with some reasonable



MACHINE LEARNING FOR 21CM STUDIES AND COSMOLOGY 5

Figure 3. Contours representing constraints derived from direct MCMC (21CMMC) and
embedded-emulator methods (Kern, 2017).

variance, and verifying the resulting distribu-
tions. The goal of such models is to map from
the lower dimension spaces, such as those of
density fields, to ones of higher dimension,
such as small-scale structures, more efficiently
(Ramanah, 2020). This is required by the
prohibitive computational intensity associated
with traditional methods of modeling systems
of many non-linearly behaved components and
tracking their interactions and interdependen-
cies.

Model emulation generally refers to the col-
lection of surrogate models which are used to
represent a simulation defined by its param-
eter space (Kern, 2017). Fiducial values are
varied individually for a given set of param-
eters and from these a model is developed to
emulate, rather than directly reconstruct, a
distribution, e.g. the 21cm power spectrum
(Schmit, 2017). Since the 21cm distribution
has previously been computed for different pa-
rameter values, it is possible to draw lines of
best fit for the outputs of emulators in order
to judge these models’ effectiveness. In situa-
tions where emulators are able to recreate such
distributions, they often supersede traditional

methods given their computational superior-
ity. Several examples of emulators built on
neural networks and their comparative com-
putation requirements are discussed below.

3.1. Embedded versus standalone neu-
ral networks for MCMC refinement

In the case of the Kern et al. (2017), an em-
ulator is embedded within the 21CMMC model
developed by Greig and Mesinger (Greig,
2015) to optimize computation time while
maintaining a high degree of accuracy. 21CMMC
is a Monte Carlo Markov Chain (MCMC)
analysis tool built on 21cmFAST (Greig, 2015),
and until recently was the only means of simu-
lating the parameter space from the Epoch of
Reioniziation (Kern, 2017). As shown by the
contours in Figure 3, parameter constraints
computed by the emulator were very similar
to those computed by brute-force, and per-
haps most importantly the former were more
conservative (Kern, 2017). Stated differently,
the constrained space of the emulator was by
and large enclosed inside that of the brute-
force method, implying the estimates were
useful and trustworthy. One shortcoming ex-
plored was with respect to the dependence of
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emulators on the size of their training data
sets (Kern, 2017), especially when dealing
with highly-unconstrained parameters. This
is potentially a temporary problem as new,
large data sets are expected from instruments
which will be operational in coming years
(Villaescusa-Navarro et al., 2020), and as new
methods are developed for even the most ill-
behaved spaces.

A neural network can also be implemented
as a standalone design, and the formula-
tion discussed here had significant computa-
tional advantages to a comparable MCMC
model. Schmit and Pritchard (2017) show
artificial neural networks (ANN) are an ef-
fective tool for accelerating computation for
models in which output is continuous and can
be mapped with few points, as is the case for
the power spectrum of the 21cm wavelength
(Schmit, 2017). As a result, they were able
to faithfully recreate the 21cm power spec-
trum from a set of parameters using an ANN
while varying ⇣, Tmin

vir , and Rmfp, and error
was largely confined to runs where parame-
ters values were near interval bounds. Emula-
tors are particularly useful for narrowing con-
straints on reionization and heating parame-
ters (Kern, 2017), as is reflected here. The
emulator was run for multiple subsets of the
training data set and training durations to es-
tablish the importance of both on the param-
eter best fit values and it was shown that so
long as training data is representative of the
space it need not exactly follow its true distri-
butions (Schmit, 2017). A comparable process
which used MCMC had a runtime of 2.5 days
with 6 cores per redshift (Greig, 2015); the
ANN discussed here was able to perform the
computation in 4 minutes.

3.2. Restricted neural networks and
Wasserstein loss

Alternatively, a restricted neural network
is best for emulation scenarios in which one
wishes to map from low resolution density
field models to high resolution small-scale
structures (Ramanah, 2020). This method
is discussed by Ramanah et al. (2020) and
uses an approximation of the Wasserstein dis-
tance as its loss function. The application is
not specific to 21cm but worth exploring for

its implications to that field. The principal
assumption made here that is not immedi-
ately obvious for 21cm and may indeed pose
issues, is rotational symmetry. It is possible
this can be remedied as outlined in subsection
4.2, where convolutional kernel symmetries
are discussed, but this remains to be demon-
strated.

Figure 4. Depiction of density field
emulated from initial conditions and

low-resolution version; a simulated high
resolution density field depicted for

comparison.(Ramanah, 2020).

The Wasserstein approach is a variation on
a generative adversarial network (GAN) that
defines an approximation to a Wasserstein loss
function (1) as the distance between the gen-
erated distribution and the target Whereas a
GAN typically uses a discriminator to classify
outputs of the generator as either close to that
of the target or otherwise, this version instan-
tiates a loss function directly correlated to the
output image resolution. As can be seen in
Figure 4, the results visually closely resemble
those of a traditional high-resolution simula-
tion forgoing the associated computation in-
tensity.

The effect on computation time is, as
hoped, substantial: the emulator, which
clocks 45 CPU hours, features a speed up
of a factor of 11 when compared to run-
ning the normal high-resolution simulation for
500 CPU hours (Ramanah, 2020). This is

(1)Computation of a Wasserstein distance is, in practical terms, intractable. Therefore, an approximation may
be used provided that certain constraints are met; otherwise, a gradient penalty may be imposed.
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achieved with accuracy bounded from below
by that of other deep generative models. Ra-
manah (2020) finds also that this particular
set up is largely unaffected by small varia-
tions in the mass density, ⌦m, which contrasts
greatly with the results of Villaescusa-Navarro
et al. (2020) shown in Figure 5, where ad-
justing ⌦m yields high fluctuation of matter
(specifically, gas metallicity) distribution in
output images.

3.3. Lagrangian deep learning
Lagrangian deep learning (LDL) exploits

translations and rotational symmetries (Dai
2020) to constrain the simulation and min-
imize computational intensity. It is useful
for emulating hydrodynamic simulations (Dai
2020) such as those discussed in the CAMELS
project, and is modeled on effective theory
(Dai 2020): the Lagrangian is rewritten to
encapsulate the most general form with the
restriction that symmetries are satisfied, and
its free coefficients represent unresolved small
scales (Dai 2020). By comparing the pre-
dicted and target distributions of the power
spectrum, researchers have shown LDL meth-
ods are better predictors of baryonic distribu-
tions than full hydrodynamic simulations (Dai
2020), a powerful result given how much more
costly (2) those simulations are than their ma-
chine learning counterparts. Therefore, LDL
methods are both more accurate and cheaper
to run than the full simulations traditionally
used for fitting observational data. LDL offers
great potential for speeding up computation,
just as the other machine learning algorithms
discussed in prior subsections, but with the
added benefit that now results are of higher
resolution than those of non-ML simulations.

3.4. Discussion
The nature of research discussing emulation

techniques is adaptive but myopic, in the sense
that a given paper focuses largely on the par-
ticulars of a specific computation or the ad-
justment and refinement of a preceding ap-
proach. This is no accident, as the improve-
ment on previously-established methods is the
most effective way machine learning can ben-
efit 21cm studies. One means of achieving

such results is speeding up the time it takes
to perform computations, and can be accom-
plished by embedding an emulator within a
more general model (Kern, 2017; Ramanah,
2020), or replacing the model entirely (Schmit,
2017). Emulation offers many advantages for
efficiently computing distributions given large
training data sets are available. Selecting the
right type of model depends largely on what is
to be achieved: in the case of establishing con-
nections and interdependencies of parameters,
a convolutional neural network is best.

Where the goal is to map from low reso-
lution density field models to high resolution
small-scale structures, it makes sense to pur-
sue a strategy that directly related output to
a loss function, and the Wasserstein optimized
GAN is a reasonable approach. In every pa-
per discussed, incorporating an emulator into
an existing algorithm or replacing a brute-
force approach with an emulator led to orders
of magnitude of savings in computation time,
and sometimes even lowered storage space re-
quirements (Ramanah, 2020). The most effec-
tive uses of emulation were those that used it
to extend the scope of analysis such as further
constraint of parameter spaces (Kern, 2017)
and insight into loss calculation (Ramanah,
2020). Emulation scales well and speeds up
model evaluation while maintaining a high de-
gree of accuracy (Schmit, 2017), and as such
will be a crucial component of 21cm models
as it becomes necessary to process more and
more experiment data in coming years.

4. Parameter Estimation

Parameter estimation is the inverse ap-
proach of the one described in the previous
section; now, parameters are extracted from a
given data set. As discussed, data sets are pro-
jected to grow with new experimental and ob-
servational results coming in, and the need to
examine these both effectively and efficiently
will benefit from the computational advan-
tages offered by machine learning methods.

(2)Two LDL solvers are set up, one that is FastPM-based and the other N-body-based. These are used to
generate maps that require 7 and 4 orders of magnitude less computation time respectively when compared to
hydrodynamic simulations (Dai 2020).
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4.1. The CAMELS Project
The problem of estimating parameter val-

ues is approached by constraining the possi-
ble values of a given parameter or the space
itself. The CAMELS Project (2020) is a re-
cent, monumental effort consisting of 4233
cosmological simulations that compares the
full power spectrum distributions to those of
baryonic matter, demonstrating that it is nec-
essary to marginalize over the latter in or-
der to properly interpret cosmological surveys
(Villaescusa-Navarro et al., 2020). CAMELS
uses two suits, “IllustrisTNG” and “SIMBA,”
to perform this marginalization. One set
of SIMBA data examines the effect of vary-
ing cosmological parameters on a region of
25⇥ 25⇥ 5(h�1Mpc)3. In Figure 5 it is clear
to see varying each parameter even somewhat
can have large effects on the metallicity of
the gas, and thus on the conditions that re-
gion would have for star formation. In or-
der to draw conclusions about the indepen-
dent effects of a given parameter, it would be
necessary to decouple its effects from that of
the others. Each parameter explores a differ-
ent basis direction, but often two parameters

might be degenerate, and overall the model is
not robust to even small parameter variance.

The suites are found to be both fast and
accurate, and can be used to estimate pa-
rameter values such that these estimates are
in close agreement with observational data
(Villaescusa-Navarro et al., 2020). This is
accomplished via non-Bayesian modeling, i.e.
the posterior,

P (✓|d) = P (d|✓)⇥ P (✓)

P (d)
, (4)

where ✓ represents the set of parameter val-
ues to be extracted and d the data set used,
is ignored and instead the likelihood func-
tion, P (d|✓) is optimized. Unfortunately, con-
straints are not as rigid as the researchers
had hoped, but this is justified by the scat-
ter from cosmic variance resulting from a dif-
ferent initial random seed being used in each
run (Villaescusa-Navarro et al., 2020). This il-
lustrates CAMELS is very useful in instances
where it is not possible to write a likelihood
function directly, as it provides a way to still
find parameter values that would maximize it

Figure 5. Gas metallicity concentrations of a region as a result of individually varying
paramaters ⌦m, �8, ASN1, AAGN1, ASN2, AAGN2,. (Villaescusa-Navarro et al., 2020).
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(Villaescusa-Navarro et al., 2020). It may
prove more efficient also where the covariance
matrix must be computed from a large number
of simulations by skipping that step entirely.

One limitation of CAMELS is the volume of
simulation is insufficient to account for scales
such as galaxy clusters. Also, and perhaps
most importantly, by varying parameters in-
dividually, it fails to establish the effects that
a change in ratio of two or more would have
on the outputs. This limitation is the one re-
garding isolation of bases discussed in Section
2.1. Future work by Villaescusa-Navarro et al.
(2020) is expected to entail perturbing cosmo-
logical parameters to better explain the affects
of combinations of parameters on parameter
space constraints, as well as varying parame-
ters more, and increasing volume of simulation
sizes.

Overall, despite these drawbacks, the signif-
icant reduction in computation time makes it
a serious candidate for learning about under-
lying structures on these scales. The training,
which is responsible for the majority of com-
putational cost, can be run in parallel on 150
GPU hours (Villaescusa-Navarro et al., 2020).

4.2. Convolution neural networks and
symmetries

CNNs are traditionally popular in image
recognition technology and Gillet et al. (2019)
claim they have been adapted in cosmology
for finding and analyzing gravitational lens-
ing in images (Gillet, 2019). The convolu-
tion layer is responsible for extracting features
from the input image, and this is accomplished
by weighted filtering matrices. The resulting
series of convolutions is seen in the output im-
age, which is then pooled (shrunk while main-
taining a maximal value defined for the orig-
inal image) and flattened (rows are concate-
nated into a one dimensional array), in order
to produce the input for a classical neural net-
work, which runs a regression to continuously
fit the parameter values.

CNNs are particularly useful in this in-
stance because they allow for the convolution
kernel to be learned by the network, and thus
do not depend on it being known prior to
the running of the algorithm (Gillet, 2019).
Due to the translationally invariant nature of
convolutional kernels, it is possible to sim-
ulate arbitrarily large box sizes (Ramanah,
2020). This is useful for generating large,

high-resolution models (Ramanah, 2020) at
much faster speeds than would be possible
without the implementation of machine learn-
ing tools. It may be possible to exploit ad-
ditional symmetries such as rotation, if prop-
erties of parameter spaces can be shown to
obey spherical harmonics, as has been done in
the case of inferring dark matter halo distri-
butions with neural engines (Charnock, 2020).
CNNs have been shown to be particularly use-
ful in situations of large weak lensing surveys
despite susceptibility to noise (Ribli, 2019),
which was excluded in the proof of concept
paper from Gillet et al. (2019) and which they
intend to investigate in future work.

4.3. Discussion
Parameter estimation is concerned with

how to most efficiently infer parameters, and
though location-specific precision is of course
important, it may not be paramount. The sta-
tistical analysis from a given simulation may
not depend on parameters of a particular re-
gion being correctly identified, but rather on
the probability that given many regions, some
percent of them would be expected to behave
in a certain way (Nichols, 2019). The likeli-
hood function in this context would be learned
from performing many simulations and then
applied to data in order to return the most
probable sets of parameters. If the intention
is to derive summary statistics, say for finding
that some percentage of regions have metal-
licities needed for star formation, it may be
sufficient to summarize distribution probabil-
ities without ascertaining which of the loca-
tions would fall into that percentage.

Autoencoders used in the training of neu-
ral networks are able to reduce dimensional-
ity of data for nonlinear spaces, similarly to
how Principle Component Analysis is used in
generic constructions. The purpose of the au-
toencoder is to find a lowest dimensional rep-
resentation from which the original can be re-
constructed, and to then use this representa-
tion in lieu of the costly original to generate
data (Villaescusa-Navarro et al., 2020). Con-
sequently, the information loss is on the same
order as the loss in accuracy from original
to reconstruction, and thus error is behaves
both predictably and consistently. Because
the success of parameter estimation methods
is related to how well a method qualitates
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underlying relationships and patterns, PCA-
analogous reduction is quite useful, and has
been applied to both simulated and real 21cm
data (Makinen, 2020). It is not discussed
whether autoencoders discriminate between
loss of dimension due to innate sparsity, e.g. if
the original image is of lower rank than its size,
versus loss of information. It would certainly
be valuable to determine whether such a sepa-
ration is possible to make, and could perhaps
be inferred from error variances (since the first
case would presumably not contribute sub-
stantially to error). One consideration could
be to develop an autoencoder to mimick Sin-
gular Value Decomposition, which would also
make it possible to a prior specify allowed
error and compute the representation to be
within those bounds (Trefethen 1997). Over-
all, autoencoders are indeed a valuable feature
of generative models and offer exciting oppor-
tunities for exploiting the dimensionality re-
duction capabilities of numerical methods.

5. Telescopes and Signal Detection

Ewen and Purcell first observed the 21cm
signal in 1951 using a microwave radiometer.
Since then, a variety of telescopes have been
built and more commissioned with the hopes
of detecting the signal directly (Schmit 2018)
and in nonlocal galaxies (Davies, 2020). The
Square Kilometer Array (SKA) will be the
most sensitive radio instrument built for this
purpose and is projected to be completed in
2027. Since the Rayleigh criterion relates the
minimum angular resolution of a telescope to
its size as follows:

✓min = 1.22⇥ �

Dtelescope
, (5)

where � is the observed wavelength and
Dtelescope the diameter of the telescope mirror
(Loeb 2010), it makes sense to build large ra-
dio telescopes as arrays. Then, measurements
taken at individual antennae can be combined
to provide meaningful results. The SKA will
be built in South Africa and Australia, and
away from population centers so as to limit the
interference of everyday broadcasts which are
transmitted over a similar frequency. Other
noteworthy radio arrays include the Hydrogen
Epoch of Reionization Array (HERA), which

has as its primary purpose the 3D mapping of
hydrogen gas distribution during the epoch of
reionization (DeBoer, 2016), as well as its pre-
cursors: the Low-Frequency Array (LOFAR)
and Murchison Widefield Array (MWA).

Early detection of the 21cm signal was noisy
and higher signal measurements are still re-
quired for the accurate mapping of the evolu-
tion of luminous matter distributions through-
out the universe. Measuring the signal is rel-
atively straightforward for the epoch of reion-
ization but becomes a more ambitious task
for the cosmic dark ages, as the progression
toward lower frequency ranges means fore-
grounds are brighter, there are contributions
from Earth’s ionosphere, and the atmosphere
becomes reflective. For this reason, more pre-
cise instruments offer a significant contribu-
tion to the task of mapping these distribu-
tions, and as always are crucial for the col-
lection of observational data which will either
support or contradict the models discussed
here, but in either case will help to further
advance the field of 21cm cosmology. Recent
developments in 21cm modeling described in
this review as well as the slated completion of
the SKA make this a truly exciting time to
study the Cosmic Dawn period.

6. Conclusion

Researchers engaged in 21cm study find
themselves at a crossroads. Due to the non
linear nature of the scales being resolved, tra-
ditional tools such as power spectrum analy-
sis fail to describe matter distributions com-
pletely, and numerical simulation accuracy
carries a prohibitive operational cost. In order
to generate more stringent bounds on the pa-
rameters of interest or better simulate small
scale distributions, such that telescopes can
better search for the 21cm signal in even the
most faraway stars and galaxies, it becomes
necessary to engage new methods.

In this context, machine learning offers
both savings on computational time and pos-
sibilities for generating boundary estimates in
situations where it were previously not possi-
ble. This review has described the two prin-
cipal techniques used by cosmologists incor-
porating machine learning algorithms in their
work, model emulation and parameter estima-
tion. Both methods are able to significantly
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improve on more established numerical anal-
yses and overcome their associated shortcom-
ings. We find that, though neural networks
and deep generative models are exciting in
their own right, they are better able to con-
strain parameter spaces when combined with
numerical methods such as MCMC, into hy-
brid models.

The possibility of reducing parameter space
dimensionality offered by autoencoders used
in neural networks offers an as of yet untapped
area for improvement over traditional meth-
ods. This topic, explored by the CAMELS
project, among others, is a likely direction for
future work. It is to be expected that machine
learning algorithms, which must minimize loss
functions in the training stage, should be con-
cerned with exploiting sparsity. Similarly, it
may be possible to use additional symmetries
in the problem statement to more efficiently
encode information and reduce computational
intensity.

On the other hand, the question of how best
to emulate existing numerical simulations de-
pends entirely on the scope and intent of the
problem definition. The many different types
of emulators available are successful for spe-
cific conditions outlined in the section where
they are described. As such, there is no best
emulator in general, though all of the ones dis-
cussed in this review offered orders of magni-
tude of reduction in computation time.

As further constraints are determined for
cosmological and astrophysical parameters,
better models are formulated for describing
early universe matter distributions, and more
precise instrumentation comes into operation,
it will become possible to significantly advance
our understanding of fundamental physics and
the state of the early universe.
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A. Appendix 1

CNN diagram taken from Gillet et al. (2019). An input image is filtered by successive applica-
tions of convolution and pooling layers which produce a lower resolution representation of the
original. This is further reduced by a flattening layer and is in turn fed into a neural network
to extract parameter values.
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