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Abstract

Gravitational wave measurements from LIGO have previously been used to place effec-

tive constraints on Lorentz-violating quantities such as the massive graviton. We expect

an influx of detections in the 10−1 − 10−4 Hz frequency range once LISA is operational,

allowing such constraints to be generated for gravitational waves transversing multiple

frequency bands. This will open up gravitational wave astronomy to an exciting multi-

messenger era and allow theories of modified gravity to be rigorously tested. We develop

a phenomenological model to study the frequency-dependent effects of modifications to

gravitational wave dispersion relations, in the hopes of constraining data for an effective

field theory of gravity. This model is sufficiently general to allow for the choice of phe-

nomenological parameters to be updated as needed. A Fisher analysis is performed to

constrain results in parameter space. Though the model is developed for LIGO and LISA,

extensions to the Einstein Telescope are discussed.
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Conventions

Partial derivatives are written ∂
∂xµ

= ∂µ =,µ and covariant derivatives ∇µ

The metric signature is given by (-1, 1, 1, 1) and the metric gµν = diag(−1, 1, 1, 1)
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Chapter 1

Introduction

As black holes merge and collide, they produce ripples in spacetime not unlike those

from a stone skipped across a pond. These ripples, called gravitational waves, carry

information that informs our theories of the origins and evolution of the universe, and

the very structure of gravity. We know general relativity is an incomplete description of

reality, and a search for violations helps us discover precisely where it breaks down [1].

The high energy scales at which this is expected to happen can be probed to determine

constraints on, for example, gravitational wave dispersion relations. These constraints

can then be used to formulate an effective field theory framework for gravity – one that

we expect would provide a more complete representation of reality.

We begin by considering a binary black hole system in the context of standard general

relativity. As the component masses, m1 and m2, approach each other, they distort space-

time radially (shown in Fig. (1.1)). In GR, this distortion is described mathematically as

waves propagating at the speed of light [2]. The component masses experience an inspiral

phase as their orbits grow closer, and eventually they merge into a single, coalesced object

of chirp mass,

M =
(m1m2)

3/5

(m1 +m2)
1/5

=
c3

G

[
5

96
π−8/3f−11/3ḟ

]3/5
(1.1)

where f is observed frequency, and G and c the familiar constants as shown in Table 1.1

[3]. The chirp mass is then the effective mass of the system once energy dissipation due to

gravitational wave radiation has been accounted for. This is also the quantity, expressed

as a multiple of solar masses, which is either within or outside of some known sensitivity

band for a particular instrument. This is an important consideration as it drives the
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Physical constant Symbol Value

Compton wavelength [of electron] λC = h/m[e]c [2.426× 10−12m] N m2 kg−2

Gravitational constant G 6.6743× 10−11 N m2 kg−2

Planck constant h 6.626× 10−34 J s
Planck constant, reduced ℏ = h/2π 1.055× 10−34 J s
Speed of light in a vacuum c 2.998× 10−8 m s−1

Table 1.1: Table of fundamental physical constants with values taken from [5].

discussion of the kinds of systems our model will address.

We want to probe frequency-dependent modifications to the dispersion relations of gravi-

tational waves. This involves describing the waveform in (an approximation to) standard

GR, and introducing modified quantities that drive its propagation over cosmological

distances. These are generalized in a model that takes in an unmodified waveform and

produces a new, modified waveform. Since the modified waveform should not deviate

greatly from the original signal (equivalent to recognising GR is indeed an accurate the-

ory), the modifications introduced are small. More precisely, some are on the order of the

Planck scale (see Table 1.1). For this reason, many of the figures consider the ratio of

modified to unmodified waveform, or the phenomenological parameter in its limit, so as to

track changes to wave propagation. This may prompt the question: if GR is indeed a valid

theory of gravitation, why do we introduce modifications at all? And can constraining

the effects of these modifications truly provide a more complete understanding?

1.1 General relativity: an incomplete theory

Gravitational waves quantify the energy released by an accelerating object [2], and the

resulting distortion of spacetime should be observed to propagate at the speed of light

under GR [6]. However, we expect general relativity is a low-energy approximation of

an effective field theory (EFT), one that can generalise general relativity rather than

dismissing it outright [7]. If there are differences between the predictions of GR and

observation, they would necessarily become visible at high energy scales or low length

scales. As such, the mergers of black holes or other extremely massive objects are a likely

candidate. These differences are described in multiple frameworks of modified gravity,

and generally involve a massive graviton that corresponds to a change in the speed of the

wave propagation, or gravitational wave dispersion [8][9]. Conversely, the detection of a

modified phase in a gravitational wave signal would be compelling evidence that the wave

2



Figure 1.1: TOP: Coalescence of a binary black hole system in the time domain. The two
objects orbit each other in increasingly closer proximity, producing gravitational waves of
increasingly higher frequency, before coalescing into a single object. BOTTOM: Compare
to the evolution of the waveform signal produced by this system and shown on an axis of
time before and after the final coalescence. Adapted from [4].
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is mediated by some massive graviton. This would have implications for Beyond Standard

Model physics [10], quantum gravity [11], and the cosmological constant problem [12].

Determining constraints on a modified signal is one avenue for isolating the possible forms

a nonstandard waveform could take and interpreting observed signals. This is important

as currently many of the nonstandard waveforms produced by LIGO are dismissed as

‘glitches’, and it is possible we are missing out on a significant portion of evidence for

beyond GR theory [13]. By characterising the modified signal in a rigorous framework and

controlling for frequency effects, we hope to provide a tool for approaching nonstandard

observables in a systematic, coherent way.

1.2 Data constraints using gravitational waves

It is useful to note there is evidence in the work of [14], [15], and others to motivate this

project. In particular, constraints on the speed of propagation of gravitational waves have

been determined previously.

For example, binary systems sometimes have electromagnetic counterparts, such as gamma-

ray bursts, emitted alongside gravitational waves. These can be used to constrain the

speed at which the gravitational waves propagate. This strategy was used forGW170817,

allowing for better constraints to the upper bound of time to travel to the detector [16],

and for GW150914 to constrain Lorentz violation effects [17]. Such constraints are

particularly useful for frequencies that correspond to cutoffs beyond which gravitational

waves may travel at different speeds than in lower energy regimes [14]. Crucially, it can

be shown that for frequency ranges typical of future detectors it will not be necessary to

have an EM counterpart to place similar constraints [16].

The contribution offered here is a systematic way to reproduce some of these constraints

using a phenomenological model. The model is built around a sufficiently generic disper-

sion relation which, depending on the choice of certain parameter values, corresponds to

modified theories of gravity.
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Chapter 2

Theoretical background

2.1 The weak-field limit of general relativity

Gravitational waves are small tensor perturbations of the metric, gµν , and so it is useful

to work in a preferred set of coordinates where the metric assumes the form,

gµν = ηµν + hµν (2.1)

with |hµν | ≪ 1 and for ηµν = diag(−1, 1, 1, 1) the metric in flat, Minkowski space. We

can neglect higher-order terms of hµν and work to first-order where necessary. We will

see that doing so produces a linearized form of the Einstein field equations of general

relativity by way of a calculation of the necessary curvature tensors. The introduction of

a particular gauge will, in turn, motivate a search for the solution to the resulting wave

equation.

Noting that for a linear metric of the form Eq. (2.1) the inverse is simply,

gµν = ηµν − hµν +O(h2) (2.2)

we can calculate the associated first-order Christoffel symbols using their usual definition

and noting that gµν,ρ = (ηµν + hµν),ρ = hµν,ρ (where we introduce a simplified notation

5



for partial derivatives as show in the Notational convention section),

Γµνρ =
1

2
gµσ (∂ρgσν + ∂νgσρ − ∂σgνρ)

=
1

2
ηµσ (hσν,ρ + hσρ,ν − hνρ,σ)

(2.3)

We do this to facilitate practical calculations involving the metric connection. In par-

ticular, Eq. (2.3) allows us to calculate the Riemann tensor. We do this to first-order,

ignoring the higher-order terms resulting from products of Christoffel symbols,

Rµ
νρσ = Γµνσ,ρ − Γµνρ,σ + ΓµραΓ

α
νσ − ΓµσαΓ

α
νρ

=

[
1

2
ηµα (hαν,σ + hασ,ν − hνσ,α)

]
,ρ

−
[
1

2
ηµα (hαν,ρ + hαρ,ν − hνρ,α)

]
,σ

+O(ΓΓ)

=
1

2
ηµα (hαν,σρ + hασ,νρ − hνσ,αρ − hαν,ρσ − hαρ,νσ + hνρ,ασ) + ...

=
1

2
ηµα (hασ,νρ + hνρ,ασ − hνσ,αρ − hαρ,νσ) + ...

(2.4)

where we have made use of the fact that partial derivatives commute to cancel the first

term with the fourth in the last expression. We can lower the µ index of the tensor on

the left-hand side by introducing a factor of the metric, and relabelling the indices in the

last expression since λ is a free index.

Rµνρσ = ηµλR
λ
νρσ = ηµλ

[
Γλνσ,ρ − Γλνρ,σ

]
=

1

2
ηµλη

µα (hασ,νρ + hνρ,ασ − hνσ,αρ − hαρ,νσ)

=
1

2
δαλ (hασ,νρ + hνρ,ασ − hνσ,αρ − hαρ,νσ)

=
1

2
(hλσ,νρ + hνρ,λσ − hνσ,λρ − hλρ,νσ)

=
1

2
(hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ)

(2.5)

The resulting form of the Riemann tensor Rµνρσ = 1
2
(hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ)

derived in Eq. (2.5) is more convenient because it allows us to compute the Ricci tensor

simply.

6



We introduce factor of ηµρ to this tensor equation,

Rνσ = ηµρRµνρσ =
1

2
(ηµρhµσ,νρ + ηµρhνρ,µσ − ηµρhµρ,νσ − ηµρhνσ,µρ)

=
1

2

(
hρσ,νρ + hµν,µσ − h,νσ −2hνσ

)
=

1

2

(
hµσ,νµ + hµν,µσ − h,σν −2hνσ

) (2.6)

where the d’Alembert operator is defined by 2 = ∂α∂α = −∂2
t +∇2 for c = 1. The Ricci

curvature tensor is determined by the choice of metric and can be thought of as a measure

of how closely the spacetime locally approximates flat (Minkowski) spacetime, for which

it is identically zero [18]. It also allows us to compute the Einstein tensor and to finish

deriving the linearized Einstein field equations, which govern the relationship between

energy and curvature in general relativity.

To proceed, we define the metric perturbation term h ≡ ηµνhµν through a contraction

along its two indices, and contract Eq. (2.6) along ηνσ to find the Ricci scalar,

R = ηνσRνσ =
1

2

(
ηνσhµσ,νµ + ηνσhµν,µσ − ηνσ2h,σν − ηνσ2hνσ

)
=

1

2

(
hµ,µ + hµ,µ − 22h

)
= hµν,µν −2h

(2.7)

Combining Eq. (2.6) and Eq. (2.7) gives the Einstein tensor,

Gµν = Rµν −
1

2
ηµνR =

1

2

(
hρµ,ρν + hρν,ρµ − h,µν −□hµν

)
− 1

2
ηµν

(
hρσ,ρσ −2h

)
+O

(
h2
)

=
1

2

(
hρµ,ρν + hρν,ρµ − h,µν −□hµν − ηµνh

ρσ
,ρσ + ηµν2h

)
+O

(
h2
)
(2.8)

We can use the Bianchi identity, which states that if the partial derivatives of a tensor

at a point equal the covariant derivatives at that point, then the partials of the Riemann

tensors sum to zero. In the linearized case of Eq. (2.8), since ∂µG
µν = 0, we have

∇µG
µν = 0 and the condition is satisfied. Thus since [18],

Rµν −
1

2
ηµνR = 8πGTµv (2.9)

by keeping only those terms of the stress-energy tensor Tµν that are linear in hρσ, we can

7



write the linearized Einstein equations,

Gµν = 8πGTµν (2.10)

2.2 The plane wave solution

We continue working in the weak field approximation of the Einstein action, which leads

us to the Fierz-Pauli action for hµν [19],

S =

∫
dDx

−
1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µh

µν∂νh

+
1

2
∂λh∂

λh− 1

2
m2

(
hµνh

µν − h2
)
 (2.11)

This can be reduced for m = 0 to,

Sm=0 =

∫
dDx

[
−1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µh

µν∂νh+
1

2
∂λh∂

λh

]
=

∫
dDx

[
1

2
hµνEµν,αβhαβ

] (2.12)

which contains the familiar Lagrangian [7]. By fixing the gauge freedom using the de

Donder gauge, given by,

∂µhµν −
1

2
∂νh = 0 (2.13)

the equations of motion of the linearized wave equation in this metric and these coordi-

nates is now given by,

2

[
hµν −

1

2
ηµνh

]
= −16πTµν and ∂µ

[
hµν −

1

2
ηµνh

]
= 0 (2.14)

and its solution by,

hµν −
1

2
ηµνh = Aµνe

ikρxρ (2.15)

for kµ = (ω, k⃗) with the condition that these waves propagate at the speed of light, or

ηµνkµkν = 0. We will use the wave equation of Eq. (2.15) to characterize all our wave-

forms, and in particular will introduce phenomenological parameters to the phase term

to see how these affect the dispersion of the wave. Though we have derived a plane wave

solution travelling at the speed of light by assuming Lorentz-invariant transformations,

8



the introduction of modified parameters will necessarily violate such an assumption. As

a result, the introduction of modified phase parameters is equivalent to a violation of

Lorentz symmetry, and the propagation of gravitational waves at some vg ̸= c. Although

the gauge choice is not uniquely defined, it is useful for relating the initial 10 degrees of

freedom of the system to the 2 standard polarization modes for gravitational waves. In

particular, of the initial degrees of freedom, the coordinate choice fixes 4 and the gauge

choice another 4, leaving 2 independent degrees of freedom.

2.3 Standard polarization modes

We define the transverse-traceless (TT) gauge as one which transforms the polarisation

tensor Aµν such that:

Aµ
µ = 0

Aµνk
ν = 0

(2.16)

These conditions imply Aµ0 = 0. Assuming, without any loss of generality, that the

gravitational wave propagation is in the z-direction, kµ = ω(1, 0, 0, 1), we can conclude

Aµz = 0 for all µ [20]. Together, this satisfies the transverse condition. To eliminate the

Axx, Axy and Ayy components we note that the condition of (2.16) is such that Ayy =

−Axx.

We are left with an Aµν that is both transverse and traceless, as desired:

A(TT )
µν =


0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0

 (2.17)

We can label these components so they correspond to the physical polarization states

observed for a gravitational wave, namely plus and cross:

A+(= Axx = −Ayy)

A×(= Axy = Ayx)
(2.18)

Finally, combine Eq. (2.15) and Eq. (2.18) and substitute the result into Eq. (2.17) to

9



describe a gravitational wave using its standard polarization modes,

hTTµν − 1

2
ηµνh = h+ + h×

= Axxe
ikρxρ + Axye

ikρxρ

=


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


(2.19)

2.4 The modified dispersion relation

Now that we have derived a way of expressing a gravitational wave using its standard plus

and cross polarizations, we can ask ourselves how the wave propagates as a combination

of those modes. It is useful here to define a dispersion relation, and to note that under

GR gravitational waves do not experience dispersion.

We begin by considering a typical dispersion relation and introducing parameters to mod-

ify it in a general, phenomenological way. A dispersion relation is simply the relation

between the momentum, p = ∂S(x,t)
∂x

, and energy, E = −∂S(x,t)
∂t

, of an extremized system

where the action is labelled S(x, t). We use a form motivated by the parameters we hope

to use in the model, A and α:

E2 = p2c2 +m2
gc

4 + Apαcα (2.20)

where mg is the graviton mass [21][22] and c ̸= 1. This can be rewritten to solve for the

velocity vg at which gravitational waves propagate in the framework of a massive graviton

carrying the wave. We set A = 0 and α = 2 as this does not yet require phenomenological

modification, and write.

E2 −m2
gc

4 = p2c2 (2.21)

Since velocity is defined by v = c2p
E
, we can substitute the expression pg = vgEg

c2
for the

momentum of the graviton into Eq. (2.21) and divide through by Eg, its energy, to find,

1−
[
mgc

2

E2

]2
=

[vg
c

]2
(2.22)

which gives the velocity relative to the speed of light, and which approaches unity as the

10



graviton mass goes to the fiducial point, mg = 0. For a massive graviton, the wave will

undergo dispersion and propagate at this velocity vg [23]. As explained by Mishekari et

al. [22], the dispersive effects in wave propagation are equivalent to incorporating the

parameters α and (to first order) A into a modified dispersion relation,

[vg
c

]2
= 1−

[
mgc

2

E2

]2
− A

E2

[
E
v

c

]α
= 1−

m2
gc

4

E2
− AEα−2

[v
c

]α
= 1−

m2
gc

4

E2
− AEα−2

[√
1−

(m2
gc

4

E2
) +O(A2)

]α

= 1−
m2
gc

4

E2
− AEα−2

[
1−

(m2
gc

4

E2
)

]α/2
(2.23)

This relation simplifies to,

[vg
c

]2
= 1−

[
mgc

2

E2

]2
− AEα−2 (2.24)

in the limit where E ≫ mg, it is straightforward to relate the phenomenological parameter

relationship to whether the graviton travels at faster or slower than the speed of light,

i.e. the fiducial speed v = c for general relativity. In particular, for positive A, or more

precisely (mg/E)2 >
√
|A|Eα−2, we have vg < c.

Recall the general form for phase is given by Ψ = [i2πf − vt] for a traveling sinusoidal

wave. Then, it is possible to dephase this wave by treating it as a stream of particles

(in our case, gravitons moving along geodesics) which travel at Eq. (2.24). Doing so is

equivalent to modifying the velocity term at each frequency by this linear relation. When

considering how to define the cosmological distances over which these particles travel, it

becomes necessary to introduce an intermediate term to account for apparent differences

in distance travelled as measured in phase changes at a given frequency; there will be

more on this in the derivation of modified luminosity distance in Section 3.2.

We define the wavelength λA = hA1/(α−2) to describe where effects peak in ω because, in

general, there should be visible phase coherence for ω ∼ λA. We can use λA to relate the

graviton mass to the frequency of the gravitational wave signals. Specifically, we consider,

mg = Ee

[
1

λgfe

]
(2.25)

11



and substitute in the emitted gravitational wave frequency, fe = Ee/h, which reduces Eq.

(2.9) to mg = h/λg → λg = h/mg, which we can identify with the Compton wavelength

for this particle.

This outlines how introducing phenomenological parameters will modify the traditional

dispersion relation for a gravitational wave. These changes should be detectable [24] for

a waveform propagating over cosmological distances. To fully characterize the dispersion

relation, it may be necessary to account for changes in group velocity due to individual

eigenstate distortions [25], but that remains outside the scope of this project.

2.5 Frequency-dependent approach

2.5.1 Telescopes and detectors

The nature of gravitational waves necessitates highly calibrated and sensitive instruments

to place reasonable detection limits on signals. LIGO accomplishes this by combining

laboratories on different continents into an effectively Earth-sized aperture [3]. This ob-

servatory detects signals in the 101 − 104 Hz.

The next range in frequencies to be probed will be the microhertz bands, which will be

covered by the Laser Inferometer Space Antenna (LISA), due for launch in the 2030s [26].

LISA, will look for signals from black holes around the time of the first stars, and directly

map the curvature of spacetime around their event horizons. In doing so, it will test

the strong-lensing interactions [26] around early, quiescent black holes [27], and search

for anisotropies from the early universe [28]. Also slated for launch in the 30s are the

Einstein Telescope and the Cosmic Explorer, which will look for compact objects which

do not immediately inspiral [29]. These may be able to provide extra sources in the bands

we study, and will be useful for corroborating the behavior of signals measured by LIGO.

For example, the chirp masses of Intermediate Mass Black Holes (IMBHs), around 102-

105 M⊙, are among the most difficult to detect because the frequency emitted by their

mergers sits on the edge of the sensitivity band for LIGO (except for very small redshift,

on the order of z < 0.1) [30]. Their emitted frequency is, however, precisely within the

optimal range for detection by LISA. This means that LISA will provide a chance to see

objects that LIGO does not, though again our focus will be on tracking gravitational

waves as they evolve between the sensitivity bands of multiple detectors.
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Figure 2.1: Diagram showing interaction between an incoming gravitational wave polar-
ized along the z-direction and a laser inferometer situated in the xy-plane. The + and
× polarizations are given based on how these would distort a circle of freely-falling par-
ticles, and these distortions are matched to the corresponding point in the period T of
propagation. A GW detector would observe this change due to the interference of the
gravitational wave with the light wave from its laser beams. Taken from [20].

Fortunately, whether the gravitational wave observatory is on Earth or in space, the basic

mechanism for detecting signals is the same. To start, the design of LIGO involves two

arms of 4km each which stretch out at a 90◦angle and which have laser beams passing

back and forth. Suppose these arms are aligned on the xy-plane, and a gravitational wave

passes transverse to this plane. The gravitational wave distorts spacetime as it passes

through the detector, which shows up as a change in the time it takes the lasers to travel.

Otherwise, the light beams superimpose and cancel.

Based on the polarization mode of the wave, described in Section 2.3, the detector will

register differences in the time it takes both waves to travel, due to the stretching or

compression of the phase [31]. A schematic of this can be seen in Fig (2.1), which assumes

the same geometry we do and where the period T is given by T = 2π/ω = 1/f .
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In the case of LISA, there will be a triangle of satellites in a carefully maintained formation

orbiting Earth. Notably, this will introduce a solid angle parameter to integrate the signal

sensitivity over [32]. The individual satellites will each contain two test masses whose

position will be resolved using interferometry, and this will form the basis of measuring

incoming gravitational waves [31].
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Chapter 3

Assembling and testing waveforms

3.1 Approximating numerical general relativity

General relativity can be approximated computationally using a full numerical implemen-

tation. Full numerical general relativity has the highest degree of precision [33][34], but

is not always viable given the cost of running a full numerical program for a large set of

waveforms. We must therefore forgo some acceptable level of accuracy in order to build

a usable model. One of the most commonly used approximations is the post Newtonian

(PN) expansion detailed below, and in particular the TaylorF2 parametrization of the

approximant waveform [35][36].

To give an analogy: we can think of this model as a sort of bridge. The purpose is to

ferry us from the traditional theoretical framework of the previous chapter to a set of

constrained parameters representing a new framework. This requires making a choice as

to what is brought with us and what is left behind, for example, some accuracy in the

form of high-order terms and computer precision is sacrificed. Instead, we make reasonable

approximations where appropriate and use these to represent the underlying dynamics of

the system.

3.1.1 The post Newtonian (PN) expansion

The optimal trade-off for our purposes is to use the 3.5PN (post Newtonian) approxi-

mation as implemented by Buonanno et al. [35], which may seem counter-intuitive for
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research involving gravitational waves. However, this approximation has been shown to

be consistent with observation and full numerical GR [37]. There has been speculation

that the underlying reason is a redshift effect which makes strong gravity appear weaker

to observers far away [37]. We should recall also that we are working in the weak field

approximation of GR and so, for our purposes, a PN approximation is justified.

It is possible to translate the theoretical derivations in the second chapter to a numerical

description that uses this 3.5PN approximation. The general phenomenological form of

the waveform Eqn. (2.15) is given by,

h̃(f ; λ⃗, θ⃗) = Ã(f ; λ⃗)eiΨ̃(f ;θ⃗) (3.1)

where θ⃗ is a vector representing the phase parameters and λ⃗ the same for amplitude [38].

This holds for a frequency interval below some cutoff fmax at which the approximation

fails. There is also an fmin for which there is insufficient sensitivity to separate noise, and

it is described in more detail later on. The values of fmax and fmin depend on the detector

measuring the gravitational wave and can be found in Table 3.1. From these relationships

we can see that the frequency bands studied here are determined by the approximation

used, noise and signal model, and detector sensitivity.

In our model, modification parameters are restricted to the phase (which is called the

restricted PN approximation [22]) and so Eqn. (3.1) simplifies to,

h̃(f ; θ⃗) = Ã(f)eiΨ̃(f ;θ⃗) (3.2)

The two are equivalent in the sense that they generally describe the same physical phenom-

ena, though the theoretical equation is more representative of nature and the numerical

equation more relevant to studying the system. Going forward, we will use this definition

of the waveform.

A note about the choice of parametrization. We have already said the TaylorF2 approx-

imant is one of the most popular, and that, for our model, it makes sense to work in the

frequency domain. It is also worth mentioning how the approximant is generated. As

the name suggests, it relies on a Taylor series expansion of the velocity v = (πMf)1/3 in

the phase term of the waveform. This is the case for all of the Taylor PN approximants

(compare to IMRPhenomA, which instead uses a phenomenological formulation [39]). The

F2 and T2 refer to frequency and time respectively, and to the second form of the adiabatic

phasing relations outlined in [35].
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Adv. LIGO LISA ET

fmin 10 Hz 10−5 Hz 1 Hz
fmax 104 Hz 1 Hz 105 Hz

ϵ 1
√
3/2 1

Table 3.1: Cutoff (measured) frequencies for different classes of detector. These are
important for determining the range within which our model is effective. Also shown
are the values of ϵ, a constant accounting for the detector geometry and relevant for the
waveform amplitude terms.

3.1.2 The Stationary Phase Approximation (SPA)

A stationary phase approximation (SPA) is used to produce an analytic solution to the

Fourier transform of a waveform. The approximation effectively assumes that all time

dependence is in the phase of the wave, and thus is valid when the phase changes much

faster than the amplitude does. Hence, it avoids computing the Fourier transform of a

nonlinear term. It is a robust approximation to use; in fact, it can be shown that second-

order corrections to the SPA are sufficiently small so as to be discarded [40], and due to

the time windowing rather than a failure of the approximation itself.

Though the model takes in and modifies PyCBC waveforms, it is necessary to ensure the

modifications themselves behave as expected. It is easy to see the modifications produce

changes by comparing the input waveforms to the output, but how do we ensure those

changes are only the ones we want? We start by generating unmodified signals in house,

and convincing ourselves these recreate the PyCBC waveforms. As expected, the waveforms

produced in house correspond well to those generated by PyCBC, but the exercise is a

useful one as there are constants of integration due to the Fourier transform and scaling

corrections that arise.

3.2 Modified luminosity distance

We now turn to a definition of a modified luminosity distance, useful for parametrizing

the modified signal as a function of redshift and understanding precisely how it changes

while traveling from the system to the detectors.

To do so, let us introduce the cosmological principle, which states the universe is the same

for all observers on scales of roughly≳ 100 Mpc. This is equivalent to saying the universe is
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homogeneous (obeys translational symmetry) and isotropic (obeys rotational symmetry),

on these scales. Together, these assumptions give rise to the Friedman-Robertson-Walker

(FRW) metric:

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dθ2 + r2sin2θdϕ2

)
(3.3)

where (r, θ, ϕ) are spherical coordinates, r is the co-moving radial coordinate, K is the

curvature constant, and a(t) is the scale factor [5]. Note this implies the only expansion

admitted is expansion or contraction which is the same in all directions. From here we

can obtain a new expression for the modified dispersion relation first encountered in Eq.

(2.20) [41],

gµνp
µpν = −E2 + δija

2pµpν = −m2
g + A|p|α (3.4)

where the momentum,

pµ =
(
E, k/a2, 0, 0

)
(3.5)

has been redefined in terms of the metric, |p| =
√
(gijpipj) = k/a2 for the comoving wave

number k and scale factor a. This reduces to the standard dispersion relation for massless

mg. Then, we suppose a graviton is emitted at r = re and, since spherical coordinate

symmetries confine its movement to the radial component of the trajectory, we disregard

the others and receive it at r = 0.

Next, since the scale factor a is related directly to the particle momentum by,

p2r = a2(t)(E2 −m2
g − A|p|α) (3.6)

we can rewrite the usual luminosity distance to a more useful metric for our parameter α.

In fact, the luminosity distance defined for the FRW metric in general relativity can be

adjusted for gravitational waves propagation in a theory of modified gravity. This is done

to avoid the distances for gravitational waves being effected by a dark energy equation of

state [42]).

Recall that luminosity distance arises from the relationship between flux, distance, and

the known luminosity of an object:

F =
L

4πd2
(3.7)

where for a comoving system, the denominator is best expressed using a term with scale
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factor dependence, χ(a),

χ(a) =

∫ t0

t(a)

dt′

a(t′)
(3.8)

To account for the fewer photons passing through a spherical shell in such a setup, a factor

of a2 = 1/(1 + z2) is introduced to the numerator. Together, these lead to the adjusted

expression,

F =
La2

4χ2(a)
(3.9)

We can see that the original form of Eq. (3.7) is recovered for a luminosity distance given

by DL = χ/a We can equivalently express the χ term as a function of redshift [41],

χ(z) =

∫ z

0

dz′

H(z′)
(3.10)

by making use of the Hubble parameter H(z). Then, using H(z) = H0E(z) to relate the

Hubble parameter to the Hubble function [5],

E(z) =
√
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ (3.11)

we have:
DL =

χ

a

= (1 + z)

∫ z

0

dz′

H (z′)

=
(1 + z)

H0

∫ z

0

dz′

E (z′)

=
(1 + z)

H0

∫ z

0

dz′√
Ωm(1 + z)3 + ΩΛ

(3.12)

The Ωk term has been removed because our universe has approximately flat curvature, i.e.

K = 0 in Eq. (3.3) above; Ωr = 0 because the universe evolved away from its radiation-

dominated phase before the gravitational wave sources we consider formed [5]. Thus we

have an expression for luminosity distance that agrees with our concordance universe.

This can now be modified to produce a luminosity distance Dα,

Dα =
(1 + Z)1−α

H0

∫ Z

0

(1 + z′)α−2 dz′√
ΩM (1 + z′)3 + ΩΛ

(3.13)

Such a distance metric is useful for calculating distances with the Lorentz-violating terms

that modify the gravitational wave signals in our phenomenological model. These are
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Figure 3.1: The effect of the α parameter on luminosity distance plotted relative to
standard luminosity distance as a function of redshift. Notably, the ratio is Dα/DL = 1
when α = 2, as this corresponds to a cancellation of the modified portion of the dispersion
relation.

numerous and outlined in Table 1.1. As an example, the ratio Dα/DL is plotted against

redshift in Fig. (3.1).

3.3 Relationship between standard ≺ modified am-

plitude and phase terms

It is useful here to describe exactly what the standard and modified waveforms look like

and how the modified waveform can be reduced to its standard counterpart. The standard

waveform,

h(f) = AS(f)e
iΨS(f) (3.14)

can be defined using its amplitude and phase [21], where

AS =

√
π

30

M2

DL

ΨS(f) = 2πftc − Φc −
π

4
+

3

128
u−5/3 ×

∞∑
n=0

[cn + ℓn ln(u)]u
n/3

(3.15)
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These are modified by introducing a mass term u = πMf = v3 where v is the orbital

velocity and a coefficient ϵ (see Table 3.1) to the amplitude and a δΨ(f) term to the phase.

The power of the mass term is determined by the 3.5PN order approximation where the

cn coefficients stop at n = 7 [35]. This is because, in general, PN approximations account

for relativistic effects through an expansion parameter ξ = v2/c2 and the phase expansion

degree for 3.5PN stops at v7 [38]. These terms are important but the non-GR components

are those in the δΨ(f) phase contribution, and so we will focus on those.

Now, the modified waveform is defined analogously to Eq. (3.14) as,

h̃(f) = AM(f)eiΨM (f) (3.16)

where the amplitude and phase terms are now given by the following [22],

AM = ϵu−7/6AS = ϵu−7/6

√
π

30

M2

DL

ΨM(f) = ΨS(f) + δΨ(f)

=

ΨS(f)− (βu−1 − ζα=1 ln(u)) for α = 1

ΨS(f)− (βu−1 + ζuα−1) otherwise

(3.17)

In particular, the term depends on factors caused by dephasing – precisely those which

we are interested in constraining. These are listed in Table 3.2 and correspond directly

to the value of the dispersion term α, which varies between (0, 4) in discrete steps of .5

and reduces to the standard dispersion relation when α = 2. In this case, the α is a

renormalization factor of c and the A correction to λA is no longer frequency-dependent

[43]. There is therefore a mapping between the modified dispersion relation and the

phenomenological parameters, as illustrated in Fig. (3.2). This inspires our approach

to constraining the modified dispersion relation and our focus on frequency-dependent

effects.

3.3.1 Confirming standard waveform behavior prior to intro-

ducing phenomenological parameters

One important step was to construct the standard waveforms in-house before switching

these out for their PyCBC counterparts. This was important to ensure any modifications

performed on the waveform behave as they should. Not only did this check the modified
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Figure 3.2: Illustration of the relationship between the standard and modified wavelengths
λs and λm, their associated velocities vs and vm, and the resulting waveforms h and h̃.
We note the modified dispersion relation simplifies to the standard, relativistic one where
there is no dispersion present. This is consistent with general relativity predicting no
dispersion for gravitational waves [44]. Note the standard forms are given in light blue
and grey, and the modified components in dark blue and grey.

Term Expression Description in GR

mg Ee(λgfe)
−1 Massive graviton 0

α 1, 1.5, 2, 2.5, 3, 3.5, 4 Exponent for momentum
component of dispersion re-
lation

2

A (λA/h)
α−2 Coefficient for momentum

component of dispersion re-
lation

0

λg h/mg Wavelength associated to
mg

∞

λA hA1/(α−2) Wavelength associated to A 0
u πMf Dimensionless mass factor -

β π2D0M
λ2g(1+Z)

Non-linearity measure 1

ζ α ̸= 1 : π
2−α

(1−α)
Dα

λ2−α
A

M1−α

(1+Z)1−α

α = 1 :πD1

λA

Effects due to preferred lo-
cation

0

Table 3.2: Phenomenological and Lorentz-violating terms used to modified the dispersion
relation.
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Figure 3.3: Strain (amplitude) of two standard waveforms plotted over the a typical
frequency range for LIGO to demonstrate in-house waveforms are reasonably similar to
those from PyCBC. TOP: The TaylorF2 approximant generated from PyCBC. BOTTOM:
The ‘test’ waveform built in house with no modifications. Though there is a normalization
factor offset which contributes to the tail missing from the bottom waveform, the two have
the same amplitude behavior.

waveforms differed only through phenomenological changes, it confirmed the modified

waveform of Eq. (3.16) reduces to its standard form in a straightforward manner. The

main point of disagreement was due to a normalization choice of 1√
n
in the inverse Fourier

transform of the signal to the time domain and an order of magnitude discrepancy due to

ϵ-scaling. Once these was adjusted for, the in-house waveforms matched those of PyCBC

sufficiently well, as seen in Fig. (3.3). This exercise convinces us any changes in behavior

the modifications reveal are due to a physical difference and not a perceived one.

3.3.2 The modified waveform: troubleshooting problems

In order to establish the waveform evolved correctly overall, we used the inner product

relationship between the amplitude and phase terms to check each separately in frequency

space. The PyCBC waveforms use an underlying SciPy function to perform the inverse

Fourier transform. A point of trouble here arose from saving the modified signal to two

separate arrays, where the real and complex portions were assigned separately. This

lead to the complex portion being returned as a real array, equivalent to losing the phase

information [45]. This was noticed by using an inner product calculation to separate phase
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and amplitude, and plotting the evolution of both, shown in Fig. (3.4). From these plots,

it was evident that the phase was not undergoing any change in time, and obviously

the phase information was not being stored properly. This was easily fixed by adding

the imaginary component back in to the array, and the result was a correctly-modified

waveform.

The inner product factorization was found using,

Φ(f) = A(f)eiψ(f)√
|Φ2(f)|

(3.18)

where the phase Ψ = (ΨGR,ΨPyCBC) and the amplitude,√
|Φ2(f)| =

√
Φ(f)Φ∗(f) = A(f) (3.19)

Combining Eqns. (3.18) and (3.19) we write an expression for the real component of the

PyCBC library waveform phase,

ΨPyCBC(f) = cos−1

[
Φ(f)√
|Φ2(f)|

]
(3.20)

This is plotted against a frequency band typical of a LIGO-observed gravitational wave

in Fig. (3.4).

The inner product check was useful also because it revealed an issue with the amplitude

evolution that may not have otherwise been detected. In particular, the amplitude term

of Eq. (3.17) may at first appear to be constant in frequency. This is not the case, and

the form of the gravitational wave envelope shows a change in amplitude over frequency

and indeed this frequency dependence is implicitly held in the luminosity distance term.

The code was fixed by introducing the relevant frequency dependence by passing through

an array of redshifts, where z = ∆f/f to the standard amplitude term.

We next check the waveforms can be translated between the time and frequency domains

using Fourier transforms. This involves saving the waveform as a PyCBC object of type

TimeSeries where the sampling is in the time domain (t0, tf ) and type FrequencySeries

where it is in the frequency domain (f0, ff ) for f0 ≥ fmin for the relevant detector-based

values as given in Table 3.1. Note the fmax cuttoff can be ignored since there is no

need to use the PN approximation to confirm waveform can be translated between time

and frequency domains. Instead, we use the non-spin phenomenological approximation,
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Figure 3.4: Frequency peaks and evolution of IMRPhenomA waveform, separated into its
amplitude and phase components.

IMRPhenomA, and the main assumption made is that changes in amplitude outpace those

in phase as explained in Section 3.1.2.

The main difficulty in transforming between time and frequency domains was due to not

being able to debug the arrays once these were made into PyCBC objects. Since PyCBC

embeds the SciPy into its Fourier and inverse Fourier transform functions, we stored

waveforms as arrays, performed the necessary (inverse) Fourier transforms by making

a direct call to scipy.fft.(i)fft, verifying behavior, and then storing as types. The

last part was necessary to check that not only did the waveforms transform correctly be-

tween domains, but they could be absorbed into the PyCBC framework for straightforward

integration.

3.3.3 Characterizing the modified signal

The resulting modification can be visualized as a birefringence of the circular plus and

cross polarizations traditionally associated with gravitational waves [46]. That is, the

modified dispersion of the waves will appear anisotropic with respect to direction [47].

Since dispersion relation for gravitational waves are well-constrained, it is likely that any

information in the modified signal will appear in the form of a fractional change [48]. We
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thus compare the ratio of modified to standard amplitudes and test parameters in their

limits. This allows us to set a reasonable bound for expected behavior but not to conclude

that the observed behavior will produce the same magnitude effects.

3.4 Fisher analysis

When gravitational wave data is received at a detector, the signal is obscured by noise. By

developing a basic methodology for extracting the signal from the data, we can isolate the

desired information. This involves considering the signal and noise components separately,

D(t) = S(t) +N(t) (3.21)

and in particular their representation in frequency space,

D̃(f) = S̃(f) + Ñ(f)

→Df −N f = Sf

(3.22)

which is found by performing a Fourier transform.

Removing contributions from noise requires constructing a noise model for the detector-

specific noise power spectra PLIGO, PLISA. Once we have a way of describing that noise,

we can perform a Fisher analysis to study the behavior of the system. To do so, we

construct the Fisher matrix using partial derivatives with respect to the phenomenological

parameters used to modify the waveforms.

This gives us a statistical understanding of how the waveform evolves in its parameter

space with respect to the changes we apply. Bounds on the effectiveness of the phe-

nomenological model in constraining data can be calculated from the Fisher analysis, as

can degeneracies between parameters.

3.4.1 The noise power spectrum

The noise power spectral density, along with location and inclination angle, is one of the

defining attributes of a gravitational wave detector [49]. It determines the frequency of

data the detector is sensitive to, which generally includes signals lying about an order of

magnitude above the associated sensitivity curves [50] shown in Fig. (3.5).
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Figure 3.5: Characteristic strain hc plotted against frequency with LISA, LIGO, Adv.
LIGO, and ET sensitivity curves shown in pink, light green, dark green, and blue respec-
tively. Adapted from data compiled from [52] [30] and [51].

By assuming the detector noise is stationary and Gaussian (with zero mean), it is possible

to fully determine the noise from its power spectral density Sn(f) [51],

(N f | N ∗
f ′) =

1

2
δ (f − f ′)Sn(f) (3.23)

which, due to real-valued constraints on data from GW sources and detectors implies

Sn(f) = Sn(−f) is an even function and can be found from integrating with respect to

positive frequencies only [51]. We can see from Fig. (3.5) that Sn(f) is valuable also

in that it allows us to easily see which signals would be within the observatory scope of

a given detector. The characteristic sensitivity strain for a detector is given by
√
KfSn

where K is a constant, e.g. K = 4 for LISA [50][51]. This is important because different

classes of objects and different stages of a merger produce signals of different frequency,

and so to have a holistic picture of the information GWs can tell us, it is necessary to

observe in as wide a total frequency band as possible. Crucially for studying dispersion,

the ability to track a single GW signal as it progresses through multiple frequency bands

would immediately constrain propagation effects.
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Sensitivity curve for Advanced LIGO

We return to considering our phenomenological approach, and plot sensitivity strains

using the analytical fit developed by Mishra et al. in their paper on parametrized tests

of PN theory [53].

We have, for x = f/f0,

Sn(f) = S0

1016−4(f−7.9)2 + 2.4× 10−62x−50

+ 0.08x−4.69 + 123.35

(
1− 0.23x2 + 0.0764x4

1 + 0.17x2

) (3.24)

For Advanced LIGO and similar detectors, f0 = 215 Hz, f ∈ (100, 104) Hz, S0 = 10−49

Hz−1, and this expression is valid for f ≥ fs = 20 Hz. The exact value of fs is not

particularly important, just that it serves as a reasonable low energy cutoff below which

the approximation fails (i.e. below which the SNR is insufficient to isolate a signal). The

upper frequency cutoff is set by a factor of vlso, the velocity at last stable orbit, and

depends on the source [35].

Sensitivity curve for LISA

In the case of a LISA-like detector, the Sn(f) is given by,

Sn(f) =

√√√√40

3
f

[
S1(f)

(2πf)4
+ 3.6× 10−41

][
1 +

(
f

2.5× 10−6

)2
]

(3.25)

where

S1(f) = 5.76× 10−48

[
1 +

(
4× 10−7

f

)2
]
s−4 Hz−1

guarantees a time×frequency unit dependence such that the overall units are in distance

as expected for amplitude.

Sensitivity curve for ET

The final design configuration of ET has not yet been decided, but the official sensitivity

curve will respect the same general frequency range as Advanced LIGO: f ∈ (100, 104)
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Hz. Using the same structure as Eq. (3.24) above, we have an analytical approximation

to the sensitivity curve given by,

Sn(f) = S0

[
(2.39× 10−27)x−15.64 + 0.349x2.145 + 1.76x0.12 + 0.409x1.10

]2
(3.26)

Now, f0 = 100 Hz and S0 = 10−50 Hz−1.

3.4.2 The Fisher matrix and parameter choices

The Fisher matrix Fij can be thought of intuitively as an exploration in parameter space

of system behavior responding to changes ∂2

∂θi∂θj
for parameters θi ∈ θ⃗. The vectors of Fij

represent directions in parameter space and the steepness of descent from some fiducial

point at which the sums of partial derivatives is identically zero corresponds to how much

changing a given parameter influences the system dynamics. In our case, the fiducial

point is the standard gravitational wave of general relativity, and the parameters are

those which we use to phenomenologically modify the waveforms. A visualization of this

behavior is provided in Fig. (3.6).

Using the appropriate choice of noise power spectrum Sn(f), we can compute the inner

product of two waveforms,

(h | g) = 2

∫ ∞

0

df

Sn(f)

[
h̃∗g̃ + g̃∗h̃

]
(3.27)

and from this calculate the SNR of a given waveform,

hSNR =
√

(h | h) (3.28)

Assuming a large SNR, the error in some parameter θi is the i-th diagonal component of

the Fisher matrix. This means the Fisher matrix is formally given by,

Fij = ⟨ ∂2h̃

∂θiθj
⟩ (3.29)

for parameters θi, θj and a signal h [54]. It is useful here to explicitly state the relation-

ship between Fij and the associated parameter covariance matrix: they are inverses of

each other [55]. Thus, the Fisher matrix tells us how well a set of parameters θ⃗ can be

constrained from the given data.
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Figure 3.6: A visualization of the Fisher matrix Fij showing how the contour plot evolves
in parameter space. The fiducial point, labelled in orange, is the one which corresponds
to general relativity and thus has all phenomenological parameters (and thus δΨ) vanish.
For clarity, only two directions α⃗ and m⃗g are shown. The point Fαmg at which the partial
derivatives with respect to θα and θmg are taken of the (real component) of the integrated
signal is called the evaluated point and shown here in blue.

Correlations between different elements of θ⃗ are given by the (nonzero) off-diagonal terms

of this matrix, and the diagonal terms correspond to (the inverses of) the variances be-

tween parameters [56]. In the limit where all vectors ∂h2/∂θi are orthogonal with respect

to the inner product given by the i, j components of the Fisher matrix, Fij, the covari-

ance matrix is diagonal and errors are uncorrelated [57]. Thus, lower error bounds are

minimized for some θi if the other θ0, .., θi−1, θi+1, .. are known. Indeed, for our purposes,

we will assume the noise is uncorrelated which leads to a diagonal covariance matrix in

detector space [55],

Cαβ = δαβPβ (3.30)

for Pβ the power spectral density of a detector β. The frequency here is described by

a Delta function with a peak corresponding to the frequency peak for the underlying

timeseries. The form of the noise power spectrum motivates the frequency-dependent

nature of the modifications in this model – since the noise is approximately stationary
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in frequency, it is easiest to work in the frequency domain. This simplifies the task of

isolating behavior to locating frequency peaks for a given waveform.

Otherwise, the minimum standard deviation increases to ∆θi ≥ (F−1)
1/2
ii [57]. Given that

other parameters are rarely known exactly, and must be themselves estimated from the

data set, the errors do usually have some correlation. Considering the opposite limit, in

which a curve can be expressed as a linear combination of other curves, the error bars

are infinite for null eigenvalues [58]. This is due to a degeneracy between parameters.

One of the most useful aspects of the Fisher analysis is determining which parameters are

degenerate with respect to each other, because it provides a theoretical limit on how well

that data can be constrained. We can use this to determine constraints for our parameters

θ⃗ and to provide an analysis of the modified waveform dispersion.

Analytical and numerical partial derivatives

Just as we had to make choices between accuracy and building a usable model when

discussing approximations to numerical general relativity, we now want to calculate partial

derivatives for the Fisher matrix – a process that can be both computationally costly and

time-consuming. However, it is better both in terms of accuracy and computational time

to take these partial derivatives analytically. Why then do we not proceed without any

numerical differentiation?

In fact we do take partial derivatives analytically whenever possible. This allows for a

faster, more accurate result. However, it is not always possible to take the partial deriva-

tive analytically; for example, when no closed analytic form exists. For these parameters,

it is necessary to take partial derivatives numerically and to do so in a way that does not

impact the model too severely.

31



Chapter 4

A phenomenological model for

modified dispersion relations

4.1 Model framework

A schematic diagram of the model is provided in Fig 4.1 and the full code is available for

download from github.com/michellegurevich/gravitationalwaves. We also provide

an overview of the code structure and the main purpose of each file.

The code is organized in two directories:

• cosmology contains jupyter notebooks for

– setting and plotting cosmological distances using CAMB

– populating and plotting waveform examples of timeseries, frequency evolution,

and demodulated signals using PyCBC waveforms

• modgravity contains

– main.py file for running the program

– distances.py file for calculating the standard luminosity distance DL, modi-

fied luminosity distance Dα, and conformal distance term χ

– waveforms.py file to calculate the phenomenological parameters θ⃗ = (α,A,mg, ζ,

β, λA); the standard and modified amplitudes AS and AM ; the phase terms ΨS,
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Figure 4.1: Schematic diagram of the model outlining its basic structure and expected
inputs/outputs. The machinery consists of determining a set of cosmological parameters
for the standard waveform h(f) and then applying a set of phenomenological parameters

θ⃗ to produce a modified waveform h̃(f). These are then compared to each other visually
and statistically, using a Fisher analysis.

ΨM, and δΨ (including numerical coefficients); any necessary constants such

as vslo, ϵ, or M; the inner product decomposition described in Section 3.3.2

– figures.py file used for plotting many of the consistency checks; for example,

plots of the Hubble parameter H(t), the distance ratio Dα/DL, the conformal

factor ratio χM/χS, h(f) and h̃(f), and the phase behavior verification

– fisher runs.ipynb file to define a set of parameters (cosmological, phenomeno-

logical, and waveform), call the model to generate a modified signal using these

parameters as input, pick a power spectrum density based on detector choice,

and calculate the analytical derivatives for a Fisher matrix

– tests directory for verifying the integration with PyCBC, i.e. extending the

library to include our standard and modified waveforms as FrequencySeries

and TimeSeries objects
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4.1.1 Analytical partial derivatives

The analytic derivatives ∂i for the set of parameters θ⃗ are calculated using the waveform

expressions of Eq. (3.16) and (3.17) with β = ζ = 0, and for a mass ratio,

η =
m1m2

(m1 +m2)
2

• AS, the standard amplitude: ∂h̃(f)
∂ lnAS

= h̃(f)

• ΨS, the standard phase: ∂h̃(f)
∂ΨS

= −ih̃(f)

• β, the non-linearity measure: ∂h̃(f)
∂β

= −iu−1h̃(f)

• tc, the fiducial time of emission: ∂h̃(f)
∂f0tc

= 2πi (f/f0) h̃(f)

• M, the (observed) chirp mass:
∂h̃(f)
∂ lnM = −h̃(f)

(
5i
128

u−5/3 + 5i
96

(
743
336

+ 11η
4

)
η−2/5u−1 − iπ

4
η−3/5u−2/3

)

Combinations of pairs of these partial derivatives correspond to entries in the Fisher

matrix as described in Section 3.4.2. We note many of the partial derivatives have terms

of h̃(f) and recall the modified signal involves both + and × polarization components.

Thus, we can finally express the Fisher matrix for our particular signal.

Fij =
∑
H

∂2

∂θi∂θj

∫ fmax

fmin

|hf |2

|N f |2
df (4.1)

where hf = h+(f, θ⃗)+h×(f, θ⃗) and H is the total population of signals. The polarization

coordinates have implicitly been assumed, but should generally be hij ∼
∑

p

∫
dfd3Ωϵijh

p(f).

An extension of this model would consider general polarization coordinates as they have

particular importance for determining which signals are being received. For example,

those signals that approach longitudinally are not accounted for, and though their phase

information would be impossible to reconstruct a priori, it is useful to describe exactly

what proportion of total signals is captured.
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4.2 Discussion and outlook

The direct detection in 2015 of gravitational waves from a binary black hole merger [3] a

century after Albert Einstein first predicted their existence provided not only support for

his theory of general relativity, but also the opportunity to probe the limits of that theory.

As we enter the statistical era of gravitational wave research, exciting new instruments

will allow us to take increasingly more accurate measurements of strong-gravity systems.

The first direct detection of gravitational waves, GW150194, came from a black hole of

mass 62M⊙ whose two components were originally 36M⊙ and 29M⊙, meaning the energy

radiated out in gravitational waves was on the order of 3M⊙c
2 [3]. Since then, dozens

more observations have been picked up by LIGO, and with multiple detectors slated for

operation in coming decades, this number is expected to grow tremendously.

4.2.1 Future detectors: toward a complete picture of frequency

Detectors such as LISA, and ET will observe new frequency ranges and new classes of ob-

jects – opening gravitational wave cosmology to its multi-messenger era. These detectors

will be able to detect signals from EMRIs, neutron star mergers, IMBHs, and individual

black holes [6][44]. The overlap between those frequency bands and LIGO will also mean

a network of detectors will be able to track a single strain as it passes through multiple

frequencies.

LISA will look for gravitational wave signals in the mHZ band, and the ET will better

constrain signals already picked up by LIGO. In addition to these inferometer-based

detectors, observatories such as NanoGrav and other pulsar timing arrays (PTAs) will

detect in the nHz frequency range [59]. The benefit of observing a different set of objects,

in this case pulsars rather than black hole or neutron star mergers, is these may introduce

new behaviors into the emitted gravitational waves not seen in current observations.

The launch of new facilities makes this an extremely exciting time to be involved in

developing predictions, as it will be possible to verify or refine these as signals come in.

For this reason, the phenomenological model developed here is designed to be sufficiently

general so as to allow for application to new detectors.
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4.2.2 Possible model extensions

It is worth noting there are several natural extensions to this project that benefit from

its generalized design. In particular, we discuss here the possibility of admitting new

polarization modes, incorporating higher-order geodesic perturbations, and making the

model more widely accessible.

Separately, gravitational waves can possibly introduce new fundamental physics in de-

scribing polarization modes. Though general relativity admits two types of wave polar-

ization, hx and h+, a strong stochastic cosmological gravitational wave background could

be expected to contain up to six [60]. Because of its configuration for both frequency and

angular modifications, and as a result of its multiple orbiter design, LISA could measure

such a background [26]. The phenomenological model built here could be easily updated

to incorporate such modes, and the machinery is already there to analyze how parameters

would interact with them.

One consideration is to test for the graviton equivalent of the integrated Sachs-Wolfe effect,

which describes how the cosmological redshifting of photons leads to uneveness in the

cosmic microwave background radiation [41]. This effect has been studied for gravitational

radiation using scalar perturbations to the FRW metric and shown to produce measurable

changes to frequency among other parameters [61].

An extended model would ideally include a user interface allowing users to directly enter

(ranges of) values for parameters that would then connect to the back-end, which would

produce a modified waveform and an analysis of its behavior relative to GR. One drawback

of the current software for generating waveforms is it requires users to install and run the

libraries on their local machines, something which is not unusual by any means but which

is susceptible to occasional breakdowns, e.g. maintaining redundant dependencies or

overriding local environments. How could the project be abstracted and what would it

look like as a ‘complete’ piece of machinery – for example, one that could be used by

students interested in modifying waveforms phenomenologically themselves?

4.3 Conclusions

We have described the scientific context of modified gravity and gravitational wave disper-

sion, derived the theoretical foundations for such theories, and elaborated on the standard
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and modified waveforms that are used to study extensions to GR. The main result of this

project was to formulate and implement a phenomenological model to study frequency-

dependent changes to gravitational waves. A secondary contribution was the derivation

of several analytic partial derivatives and the corresponding Fisher matrix, which can be

used to study correlations between the phenomenological and Lorentz-violating parame-

ters and constrain data.

The outlook for gravitational wave cosmology is an exciting one, and we may well answer

some of the questions posed here in coming years. It will be interesting to see what new

questions those answers give rise to.
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